Subscribe to:

Subscribe to :: TheGuruReview.net ::

Astronomers Discover Prehistoric Lake On Mars Could Have Supported Life

October 6, 2017 by  
Filed under Around The Net

An up-close view of Mars’ rocky deposits by NASA’s Curiosity rover shows a changing climate in the planet’s ancient past that would have left the surface warm and humid enough to support liquid water — and possibly life. Evidence of an ancient lake points to the prospect of two unique habitats within its shores; the lower part of the lake was devoid of oxygen compared to an oxygen-rich upper half. 

In a recent paper published in the journal Science, Redox stratification of an ancient lake in Gale crater,” Stony Brook University geoscientist Joel Hurowitz and his colleagues used more than three years of data retrieved from the rover to paint a picture of ancient conditions at Gale Crater, the lowest point in a thousand kilometers. The site, a 150-mile kilometer crater formed during an impact around 3.8 billion years ago, once flowed with rivers ending in a lake. The sedimentary rocks laid down by these rivers and onto the lakebed tell the story of how the environment changed over time.

Curiosity landed on a group of sedimentary rocks known as the Bradbury group. The rover sampled a part of this group called the Sheepbed mudstones, as well as rocks from the Murray formation at the base of the 5-kilometer high peak at the center of the crater known as Mount Sharp. Both types of rocks were deposited in the ancient lake, but the Sheepbed rocks are older and occur lower in the stratigraphic layers of rocks. Comparing the two types of rocks can lead to interesting revelations about the paleoenvironment. 

Rocks that form at the same time in the same area can nevertheless display differences in composition and other characteristics. These different groupings are known as “facies” and the Murray formation is split into two facies. One is comprised mainly of hematite and phyllosilicate, and given the name HP, while the other is the magnetite-silicate facies, known as MS. 

“The two Murray facies were probably laid down at about the same time within different parts of the lake,” explained Hurowitz. “The former laid down in shallow water, and the latter in deeper water.”

The near-shore HP facies have thicker layers in the rocks compared to the thin layers of the deeper water MS facies. This difference in layer thickness is because the river flowing into the lake would have slowed down and dumped some of its sedimentary material at the lake shore. The flow would then have spread into the lake and dropped finer material into the deeper parts of the lake. 

Curiosity landed on rocks known as the Bradbury group. The Murray formation consist of younger rocks at the base of Mount Sharp. The height is exaggerated in the diagram.

The different mineralogy of the two facies was caused by the lake becoming separated into two layers. Ultraviolet (UV) radiation along with low levels of atmospheric oxygen penetrated the upper part of the lake and acted as oxidants on molecules in the water. These ions of iron (Fe2+) and manganese (Mn2+) were brought to the lake via seepage of groundwater through the lake floor.

When the UV and oxygen interacted with these, they lost electrons, meaning that they had become “oxidized.” The oxidized iron and manganese precipitated into minerals — hematite and manganese oxide — that eventually made up the rocks sampled by Curiosity in the HP facies. However, the UV and oxygen didn’t reach all the way to the lake floor, so the iron and manganese wasn’t oxidized in the deeper part of the lake, and instead became the mineral known as magnetite, making up the MS facies. 

The difference in oxidation of the two facies in the Murray formation due to differences in layers of the lake is known as redox stratification. Identifying redox stratification in the ancient lake shows that there were two completely different types of potential habitat available to any microbial life that might have been present.

The researchers also discovered that the Murray formation has a high concentration of salts, which provide clues relating to evaporation of the lake, and thus the end of the potential habitat. High salinity is a result of water evaporating and leaving salts behind. However, evaporation leaves other tell-tale signs such as desiccation cracks — similar to what you see when mud dries and cracks — and none of these signs appear in the Murray formation. This indicates that the evaporation occurred at a later period of time and that the salts seeped through layers overlying the Murray formation before becoming deposited in the Murray rocks. 

“Curiosity will definitely be able to examine the rocks higher up in the stratigraphy to determine if lake evaporation influenced the rocks deposited in it,” said Hurowitz. “In fact, that’s exactly what the rover is doing as we speak at the area known as Vera Rubin Ridge.”

Once Curiosity examines these rocks, it will be able to confirm that the salts found in the Murray formation came from a later period of evaporation, and therefore no significant evaporation occurred during the time that the Murray formation was deposited, meaning the environment would have been stable enough to support possible life forms.

The inflowing river deposits thicker material (clastics) close to the lake shore, and finer material towards the deeper part of the lake. The incoming UV and O2 oxidizes the iron and manganese in the upper part

Another result of the research is evidence of climate change. The older Sheepbed formation shows very little evidence of chemical weathering compared to the Murray formation. The change to substantial chemical weathering in the younger rocks indicates that the climate likely changed from cold, arid conditions to a warm, wet one. 

“The timing of this climate shift is not something we can tell for sure because we haven’t seen the Sheepbed member and the Murray formation in contact with each other,” said Hurowitz. “If we had, then we might be able to tell if the change in their chemical and mineralogical properties were abrupt (indicating rapid climate change) or gradual. At best, what we can say is that the rocks that we examined were likely deposited over a timespan of tens of thousands of years to as much as around 10 million years.”

The cause of the climate change on Mars is still a matter of debate. If the climate changed in a short period of time, it could have been due to short-term variations or an asteroid impact. A slower change in climate could have been the result of changes in the obliquity cycle of the planet.

The climate change indicated in the rocks shows that the ancient Martian environment would have been warm and humid enough to sustain liquid water on the surface. The redox stratification of the lake as revealed by the different mineralogy in the Murray formation shows that there would have been two different environments within the lake itself. If microbial life was present on Mars at this time, the different potentially habitable niches could have encouraged diversity with anaerobic forms possibly living in the lower depths of the lake. 

“I’m not sure that this was something we would have predicted if we hadn’t had the opportunity to examine Gale’s rock record up close and personal,” adds Hurowitz.

Courtesy-Space

 

Astronomers Ponder The Role Of Physics In Life

September 25, 2017 by  
Filed under Around The Net

Understanding the origin of life is arguably one of the most compelling quests for humanity. This quest has inevitably moved beyond the puzzle of life on Earth to whether there’s life elsewhere in the universe. Is life on Earth a fluke? Or is life as natural as the universal laws of physics?

Jeremy England, a biophysicist at the Massachusetts Institute of Technology, is trying to answer these profound questions. In 2013, he formulated a hypothesis that physics may spontaneously trigger chemicals to organize themselves in ways that seed “life-like” qualities.

Now, new research by England and a colleague suggests that physics may naturally produce self-replicating chemical reactions, one of the first steps toward creating life from inanimate substances.

This might be interpreted as life originating directly from the fundamental laws of nature, thereby removing luck from the equation. But that would be jumping the gun.

Life had to have come from something; there wasn’t always biology. Biology is born from the raw and lifeless chemical components that somehow organized themselves into prebiotic compounds, created the building blocks of life, formed basic microbes and then eventually evolved into the spectacular array of creatures that exist on our planet today.  

“Abiogenesis” is when something nonbiological turns into something biological and England thinks thermodynamics might provide the framework that drives life-like behavior in otherwise lifeless chemicals. However, this research doesn’t bridge life-like qualities of a physical system with the biological processes themselves, England said.

“I would not say I have done anything to investigate the ‘origin of life’ per se,” England told Live Science. “I think what’s interesting to me is the proof of principle – what are the physical requirements for the emergence of life-like behaviors?”

Self-organization in physical systems

When energy is applied to a system, the laws of physics dictate how that energy dissipates. If an external heat source is applied to that system, it will dissipate and reach thermal equilibrium with its surroundings, like a cooling cup of coffee left on a desk. Entropy, or the amount of disorder in the system, will increase as heat dissipates. But some physical systems may be  sufficiently out of equilibrium that they “self-organize” to make best use of an external energy source, triggering interesting self-sustaining chemical reactions that prevent the system from reaching thermodynamic equilibrium and thus maintaining an out-of-equilibrium state, England speculates. (It’s as if that cup of coffee spontaneously produces a chemical reaction that sustains a hotspot in the center of the fluid, preventing the coffee from cooling to an equilibrium state.) He calls this situation “dissipation-driven adaptation” and this mechanism is what drives life-like qualities in England’s otherwise lifeless physical system.

A key life-like behavior is self-replication, or (from a biological viewpoint) reproduction. This is the basis for all life: It starts simple, replicates, becomes more complex and replicates again. It just so happens that self-replication is also a very efficient way of dissipating heat and increasing entropy in that system.

In a study published July 18 in the journal Proceedings of the National Academy of Sciences,  England and co-author Jordan Horowitz tested their hypothesis. They carried out computer simulations on a closed system (or a system that doesn’t exchange heat or matter with its surroundings) containing a “soup” of 25 chemicals. Although their setup is very simple, a similar type of soup may have pooled on the surface of a primordial and lifeless Earth. If, say, these chemicals are concentrated and heated by an external source – a hydrothermal vent, for example – the pool of chemicals would need to dissipate that heat in accordance with the second law of thermodynamics. Heat must dissipate and the entropy of the system will inevitably increase.

Under certain initial conditions, he found that these chemicals may optimize the energy applied to the system by self-organizing and undergoing intense reactions to self-replicate. The chemicals fine-tuned themselves naturally. These reactions generate heat that obeys the second law of thermodynamics; entropy will always increase in the system and the chemicals would self-organize and exhibit the life-like behavior of self-replication.

“Essentially, the system tries a bunch of things on a small scale, and once one of them starts experiencing positive feedback, it does not take that long for it to take over the character of organization in the system,” England told Live Science.

This is a very simple model of what goes on in biology: chemical energy is burned in cells that are – by their nature – out of equilibrium, driving the metabolic processes that maintain life. But, as England admits, there’s a big difference between finding life-like qualities in a virtual chemical soup and life itself.

Sara Imari Walker, a theoretical physicist and astrobiologist at Arizona State University who was not involved in the current research, agrees.

“There’s a two-way bridge that needs to be crossed to try to bridge biology and physics; one is to understand how you get life-like qualities from simple physical systems and the other is to understand how physics can give rise to life,” Imari Walker told Live Science. “You need to do both to really understand what properties are unique to life and what properties are characteristic of things that you consider to be almost alive […] like a prebiotic system.”

Emergence of life beyond Earth?

Before we can even begin to answer the big question of whether these simple physical systems may influence the emergence of life elsewhere in the universe, it would be better to understand where these systems exist on Earth first.

“If, when you say ‘life,’ you mean stuff that is as stunningly impressive as a bacterium or anything else with polymerases and DNA, my work doesn’t yet tell us anything about how easy or difficult it is to make something that complex, so I shouldn’t speculate about what we’d be likely to find elsewhere than Earth,”  England said. (Polymerases are proteins that assemble DNA and RNA.)

This research doesn’t specifically identify how biology emerges from nonbiological systems, only that in some complex chemical situations, surprising self-organization occurs. These simulations do not consider other life-like qualities – such as adaptation to environment or reaction to stimuli. Also, this thermodynamics test on a closed system does not consider the role of information reproduction in life’s origins, said Michael Lässig, a statistical physicist and quantitative biologist at the University of Cologne in Germany.

“[This] work is indeed a fascinating result on non-equilibrium chemical networks but it is still a long way from a physics explanation of the origins of life, which requires the reproduction of information,” Lässig, who was not involved in the research, told Live Science.

There’s a critical role for information in living systems, added Imari Walker. Just because there appears to be natural self-organization exhibited by a soup of chemicals, it doesn’t necessarily mean living organization.

“I think there’s a lot of intermediate stages that we have to get through to go from simple ordering to having a full-on information processing architecture like a living cell, which requires something like memory and hereditary,” said Imari Walker. “We can clearly get order in physics and non-equilibrium systems, but that doesn’t necessarily make it life.”

To say England’s work could be the “smoking gun” for the origin of life is premature, and there are many other hypotheses as to how life may have emerged from nothing, experts said. But it is a fascinating insight into how physical systems may self-organize in nature. Now that researchers have a general idea about how this thermodynamic system behaves, it would be a nice next step to identify sufficiently out-of-equilibrium physical systems that naturally occur on Earth, England said.

Courtesy-Space

Astronomers Find Titanium Oxide On Aline Planet

September 22, 2017 by  
Filed under Around The Net

For the first time ever, titanium oxide has been spotted in an exoplanet’s skies, a new study reports.

Astronomers using the European Southern Observatory’s Very Large Telescope (VLT) in Chile detected the substance in the atmosphere of WASP-19b, a huge, scorching-hot planet located 815 light-years from Earth.

The presence of titanium oxide in the atmosphere of WASP-19b can have substantial effects on the atmospheric temperature structure and circulation,” study co-author Ryan MacDonald, an astronomer at the University of Cambridge in England, said in a statement.  

One possible effect is “thermal inversion.” If enough titanium oxide is present, the stuff can keep heat from entering or exiting an atmosphere, causing upper layers to be hotter than lower layers, researchers said. (This phenomenon occurs in Earth’s stratosphere, but the culprit is ozone, not titanium oxide.)

Artist’s illustration showing the exoplanet WASP-19b, whose atmosphere contains titanium oxide. In large enough quantities, titanium oxide can prevent heat from entering or escaping an atmosphere, leading to a “thermal inversion” in which temperatures are higher in the upper atmosphere than lower down.

WASP-19b is a bizarre world about the mass of Jupiter. The alien planet lies incredibly close to its host star, completing one orbit every 19 hours. As a result, WASP-19b’s atmospheric temperatures are thought to hover around 3,600 degrees Fahrenheit (2,000 degrees Celsius).

The research team — led by Elyar Sedaghati of the European Southern Observatory, the German Aerospace Center and the Technical University of Berlin — studied WASP-19b for more than a year using the VLT’s refurbished FORS2 instrument. These observations allowed them to determine that small amounts of titanium oxide, along with water and wisps of sodium, swirl around in the exoplanet’s blistering air.

“Detecting such molecules is, however, no simple feat,” Sedaghati said in the same statement. “Not only do we need data of exceptional quality, but we also need to perform a sophisticated analysis. We used an algorithm that explores many millions of spectra spanning a wide range of chemical compositions, temperatures, and cloud or haze properties in order to draw our conclusions.”

In addition to shedding new light on WASP-19b, the new study — which was published online today (Sept. 13) in the journal Nature — should improve researchers’ modeling of exoplanet atmospheres in general, team members said.

“To be able to examine exoplanets at this level of detail is promising and very exciting,” said co-author Nikku Madhusudhan, also of the University of Cambridge. 

Courtesy-Space

With Boron On Mars Prove Life Once Existed

September 21, 2017 by  
Filed under Around The Net

NASA’s Mars rover Curiosity has discovered boron in Gale Crater — new evidence that the Red Planet may have been able to support life on its surface in the ancient past.

Boron is a very interesting element to astrologists; on Earth, it’s thought to stabilize the sugary molecule ribose. Ribose is a key component of ribonucleic acid (RNA), a molecule that’s present in all living cells and drives metabolic processes. But ribose is notoriously unstable, and to form RNA, it is thought that boron is required to stabilize it. When dissolved in water, boron becomes borate, which, in turn, reacts with ribose, making RNA possible.

In a new study published in the journal Geophysical Research Letters, researchers analyzed data gathered by Curiosity’s ChemCam (Chemistry and Camera) instrument, which zaps rocks with a powerful laser to see what minerals they contain. ChemCam detected the chemical fingerprint of boron in calcium-sulfate mineral veins that have been found zigzagging their way through bedrock in Gale Crater, the 96-mile-wide (154 kilometers) crater that the rover is exploring. These veins were formed by the presence of ancient groundwater, meaning the water contained borate.

The find raises exciting possibilities, the researchers said.

“Because borates may play an important role in making RNA — one of the building blocks of life — finding boron on Mars further opens the possibility that life could have once arisen on the planet,” study lead author Patrick Gasda, a postdoctoral researcher at Los Alamos National Laboratory in New Mexico, said in a statement. 

“Borates are one possible bridge from simple organic molecules to RNA,” he added. “Without RNA, you have no life. The presence of boron tells us that, if organics were present on Mars, these chemical reactions could have occurred.”

Scientists have long hypothesized that the earliest “proto-life” on Earth emerged from an “RNA World,” where individual RNA strands containing genetic information had the ability to copy themselves. The replication of information is one of the key requirements for basic lifelike systems. Therefore, the detection of boron on Mars, locked in calcium-sulfate veins that we know were deposited by ancient water, shows that borates were present in water “0 to 60 degrees Celsius (32 to 140 degrees Fahrenheit) and with neutral-to-alkaline pH,” the researchers said.

“We detected borates in a crater on Mars that’s 3.8 billion years old, younger than the likely formation of life on Earth,” Gasda added. “Essentially, this tells us that the conditions from which life could have potentially grown may have existed on ancient Mars, independent from Earth.”

Since landing on Mars in 2012, Curiosity has uncovered compelling evidence that the planet used to be a far wetter place than it is now. For example, the rover has found evidence of a lake-and-stream system inside Gale Crater that lasted for long stretches in the distant past. And, by climbing the slopes of Mount Sharp — the 3.4-mile-high (5.5 km) mountain in the crater’s center — Curiosity has been able to examine various layers of sedimentary minerals that formed in the presence of ancient water. 

These studies are helping scientists gain a better understanding of how long these minerals were dissolved in the water, where they were deposited and, ultimately, how they impacted the habitability of the Red Planet. The detection of boron is another strand of evidence supporting the idea that ancient life might have existed on our neighboring planet.

Courtesy-Space

Can The James Webb Telescope Find Life In Our Solar System

September 18, 2017 by  
Filed under Around The Net

The soon-to-launch James Webb Space Telescope will turn its powerful eye on two of the solar system’s top candidates for hosting alien life: the icy moons Enceladus and Europa, the agency confirmed in a statement this month.

Both Europa (a moon of Jupiter) and Enceladus (a moon of Saturn) are thought to possess subsurface oceans of liquid water beneath thick outer layers of ice. Both moons have also shown evidence of enormous plumes of liquid shooting up through cracks in the surface ice; these plumes could be caused by subsurface geysers, which could provide a source of heat and nutrients to life-forms there, scientists have said.

“We chose these two moons because of their potential to exhibit chemical signatures of astrobiological interest,” said Heidi Hammel, executive vice president of the Association of Universities for Research in Astronomy (AURA), who is leading an effort to use the telescope to study objects in Earth’s solar system.  

The James Webb Space Telescope, nicknamed “Webb,” will capture infrared light, which can be used to identify objects that generate heat but are not hot enough to radiate light (including humans, which is why many night-vision systems utilize infrared light). Researchers are hoping that Webb can help to identify regions on the surfaces of these moons where geologic activity, such as plume eruptions, are taking place. 

Enceladus’ plumes were studied in detail by the Cassini probe at Saturn. The spacecraft spotted hundreds of plumes, and even flew through some of them and sampled their composition. Europa’s plumes were spotted by the Hubble Space Telescope, and researchers know far less about them than those on Europa.

“Are they made of water ice? Is hot water vapor being released? What is the temperature of the active regions and the emitted water?” Geronimo Villanueva, lead scientist on the Webbobservation of Europa and Enceladus, said in the statement. “Webb telescope’s measurements will allow us to address these questions with unprecedented accuracy and precision.”

Webb’s observations will help pave the way for the Europa Clipper mission, a $2 billion orbital mission to the icy moon. Scheduled to launch in the 2020s, Europa Clipper will search for signs of life on Europa. The observations with Webb could identify areas of interest for the Europa Clipper mission to investigate, according to the statement.

As seen by Webb, the Saturn moon Enceladus will appear about 10 times smaller than Europa, so scientists will not be able to capture high-resolution views of Enceladus’ surface, according to the statement. However, Webb can still analyze the molecular composition of Enceladus’ plumes. 

But it’s also possible that the observations won’t catch a plume erupting from Europa’s surface; scientists don’t know how frequently these geysers erupt, and the limited observing time with Webb may not coincide with one of them. The telescope can detect organics — elements such as carbon that are essential to the formation of life as we know it — in the plumes. However, Villanueva cautioned that Webb does not have the power to directly detect life-forms in the plumes.

Webb is set to launch in 2018 and will orbit the sun at the L2 Lagrange point, which is about one million miles (1.7 million km) farther from the sun than the Earth’s orbit around the sun. The telescope will provide high-resolution views of both the very distant and very nearby universe. Scientists have already begun submitting ideas for objects or regions that should be observed using Webb’s powerful eye, and Europa and Enceladus are among the objects that are now guaranteed observing time.

Courtesy-Space

Project Blue Telescope Goes CrowdFunding

September 15, 2017 by  
Filed under Around The Net

The private space telescope initiative Project Blue launched a new crowdfunding campaign Sept. 6 in a second attempt to raise money for its mission to directly image Earth-like exoplanets. 

The initiative aims to launch a small space telescope into low-Earth orbit. The telescope will spy on our interstellar neighbor Alpha Centauri and image any Earth-like planets that might orbit the star system.

In support of Project Blue, BoldlyGo Institute and numerous organizations, including the SETI (Search for Extraterrestrial Intelligence) Institute, the University of Massachusetts Lowell and Mission Centaur, launched an IndieGoGo campaign to raise $175,000 over the next two months. The funds will be used to establish mission requirements, design the initial system architecture and test its capability for detecting exoplanets. Project leaders will also begin looking for potential partners who could manufacture parts of the space telescope, representatives said in a statement. 

“We’re very excited to pursue such an impactful space mission and, as a privately-funded effort, to include a global community of explorers and space science advocates in Project Blue from the beginning,” Jon Morse, CEO of BoldlyGo Institute, said in the statement.

Last year, Project Blue organizers attempted to raise $1 million through the crowdfunding platform Kickstarter, but the campaign was canceled after only $335,597 was contributed and Project Blue received none of the funds (as is Kickstarter’s policy). 

With the IndieGoGo campaign, however, the organizers have a more flexible goal and will be able to keep all contributions from supporters, even if the initial goal of $175,000 is not reached. So far, more than $45,000 has been raised through the campaign.

The neighboring star system Alpha Centauri is located only 4.37 light-years from Earth, making it a target for scientific research. Project Blue estimates it will take about $50 million to build the special-purpose telescope, which is planned to launch in 2021. 

The small space telescope will use a specialized coronagraph to block the bright glare of Alpha Centauri’s stars and detect planets that may be orbiting there. One planet, Proxima b, has already been detected around Proxima Centauri. 

However, Proxima b was discovered indirectly, by measuring the planet’s gravitational effect on its host star. Instead, the Project Blue telescope will be designed to directly image Earth-like planets in Alpha Centauri’s neighborhood.

 

Courtesy-Space

Do Trappist-1 Planets Have Enough Water For Alien Life

September 11, 2017 by  
Filed under Around The Net

The new study looks at how much ultraviolet (UV) radiation is received by each of the planets, because this could affect how much water the worlds could sustain over billions of years, according to the study. Lower-energy UV light can break apart water molecules into hydrogen and oxygen atoms on a planet’s surface, while higher-energy UV light (along with X-rays from the star) can heat a planet’s upper atmosphere and free the separated hydrogen and oxygen atoms into space, according to the study. (It’s also possible that the star’s radiation destroyed the planets’ atmospheres long ago.)

The researchers measured the amount of UV radiation bathing the TRAPPIST-1 planets using NASA’s Hubble Space Telescope, and in their paper they estimate just how much water each of the worlds could have lost in the 8 billion years since the system formed.

It’s possible that the six innermost planets (identified by the letters b, c, d, e, f and g), pelted with the highest levels of UV radiation, could have lost up to 20 Earth-oceans’ worth of water, according to the paper. But it’s also possible that the outermost four planets (e, f, g and h — the first three of which are in the star’s habitable zone) lost less than three Earth-oceans’ worth of water.

If the planets had little or no water to start with, the destruction of water molecules by UV radiation could spell the end of the planets’ habitability. But it’s possible that the planets were initially so rich in liquid water that, even with the water loss caused by UV radiation, they haven’t dried up,  according to one of the study’s authors, Michaël Gillon, an astronomer at the University of Liège in Belgium. Gillon was also lead author on two studies that first identified the seven TRAPPIST-1 planets.

“It is very likely that the planets formed much farther away from the star [than they are now] and migrated inwards during the first 10 million years of the system,” Gillon told Space.com in an email.

Farther away from their parent star, the planets might have formed in an environment rich in water ice, meaning the planets could have initially had very water-rich compositions.

“We’re talking about dozens, and maybe even hundreds of Earth-oceans, so a loss of 20 Earth-oceans wouldn’t matter much,” Gillon said. “What our results show is that even if the outer planets were initially quite water-poor like the original Earth, they could still have some water on their surfaces.”

Courtesy-Space

Is “Opportunity” The Longest Running Rover On Mars

August 24, 2017 by  
Filed under Around The Net

Opportunity is a rover that has been working on Mars since January 2004. Originally intended to last 90 days, the machine is still trekking after 13 years on the Red Planet. In 2015, it passed a driving milestone, reaching more than a marathon’s worth of distance (26.2 miles, or 42.1 kilometers) – and the rover keeps racking up driving time.

Lately, however, it has been showing its age. In 2014 and early 2015, NASA made several attempts to restore Opportunity’s flash memory capabilities after the rover experienced problems. Flash memory allows the rover to store information even when it is powered off. In 2015, NASA decided to continue most operations with random-access memory instead, which keeps data only when the power in the rover is on. At the time, NASA said the only change to operations will be requiring Opportunity to send high-priority data right away, as it cannot be stored if the rover is turned off. 

That said, the mission has been extremely productive on the Red Planet. Opportunity has explored two large craters — Victoria and Endeavour — among many other locations. Along the way, the rover has found multiple signs of water — while surviving a sand trap and bad dust storm.

Making an orphan’s dream come true

Opportunity and its twin rover, Spirit, received their names from 9-year-old Sofi Collis. She was the winner of a naming contest NASA held (with assistance from the Planetary Society and sponsorship from Lego) to find monikers for the Mars Exploration Rovers. Siberian-born Collis was adopted at age 2 and came to live with her new family in Scottsdale, Arizona.

“I used to live in an orphanage,” Collis wrote in her winning essay. “It was dark and cold and lonely. At night, I looked up at the sparkly sky and felt better. I dreamed I could fly there. In America, I can make all my dreams come true. Thank you for the ‘Spirit’ and the ‘Opportunity.'”

The Mars Exploration Rovers launched in 2003 on a 283-million-mile (455.4 million kilometers) journey to hunt for water on Mars. The $800-million cost for the two of them covered a suite of science instruments. Site survey tools included a panoramic camera, as well as a mini-thermal emission spectrometer that was supposed to search for signs of heat. Each rover also had a small arm with tools such as spectrometers and a microscopic imager.

Cruise to Mars

Opportunity left Earth July 7, 2003, aboard a Delta II rocket en route to a landing site at the Martian equator called Meridiani Planum. NASA was intrigued by a layer of hematite that the orbiting Mars Global Surveyor spotted from above. As hematite (an iron oxide) often forms in a spot that had liquid water, NASA was curious about how the water got there in the first place and where the water went.

The 384-pound rover made its final approach to Mars on Jan. 25, 2004. It plowed through the Martian atmosphere, popped out a parachute and then vaulted to the surface in a cocoon of airbags.

Opportunity rolled to a stop inside a shallow crater just 66 feet (20 meters) across, delighting scientists as the first pictures beamed back from the Red Planet. “We have scored a 300-million mile interplanetary hole-in-one,” quipped Cornell University’s Steve Squyres, principal investigator for the rover’s science instruments, in a press release in the days after the landing.

Early sols of science

Opportunity and Spirit (which had landed successfully three weeks earlier, on Jan. 3, 2004) had a primary goal to “follow the water” during their time on Mars. They would hunt for any environments that showed evidence of water activity, particularly looking for minerals that may have been left behind after water came through.

Both rovers met that goal quickly. In early March, just six weeks after landing, Opportunity identified a rock outcrop that showed evidence of a liquid past. The rocks at “Guadalupe” had sulfates as well as crystals inside of niches, which are both signs of water. Spirit found water evidence of its own that same week.

Two weeks later, Opportunity found hematite inside some small spheres that NASA dubbed “blueberries” because of their size and shape. Using a spectrometer, Opportunity found evidence of iron inside a group of berries when comparing it to the bare, underlying rock.

The month wasn’t yet over when Opportunity discovered more evidence of water, this time from images of a rock outcrop that probably formed from a deposit of saltwater in the ancient past. Chlorine and bromine found in the rocks helped solidify the theory.

It was a positive start to Opportunity’s mission — and it hadn’t even left the crater where it had landed yet. Before Opportunity’s 90-day prime mission was over, the golf-cart size rover clambered out of Eagle Crater and ventured to its next science target about half a mile away: Endurance Crater. It spotted more water signs there in October.

One of Opportunity’s most dangerous moments came in 2005, when the rover was mired in the sand for five weeks. NASA had put the rover into a “blind drive” on April 26, 2005, meaning the rover was not checking for obstacles as it went. Opportunity then plowed into a 12-inch-high (30 cm) sand dune, where the six-wheeled rover initially had trouble getting out.

To save the stranded rover, NASA ran tests on a model of the rover in a simulated Martian “sandbox” at the Jet Propulsion Laboratory. Based on what they learned in the sandbox, the rover drivers then sent a series of commands to Opportunity. It took the rover about 629 feet (191 meters) of wheel rotations before it was able to move forward three feet, but it cut itself free in early June 2005.

NASA chose to move the rover forward in more careful increments, which was especially important because Opportunity lost the full use of its right-front wheel (because of a seized steering motor) just days before it got stuck in the sand. The rover could still move around just fine with its other three steerable wheels, NASA said.

Opportunity’s experience in the sand came in handy in October 2005, when NASA detected unusual traction problems on Sol 603. Just 16 feet into a planned 148-foot drive, a slip check system on board automatically stopped the rover when it went past a programmed limit. Two Martian days later, Opportunity backed itself out of the problem and kept on going.

Victoria Crater

In late September 2006, Opportunity wheeled up to Victoria Crater after 21 months on the road. It circled the rim for a few months snapping pictures and getting a close look at some layered rocks surrounding the crater. NASA then made a gutsy decision in June 2007 to take Opportunity inside the crater. It was a risk to the rover as it might not have been able to climb up again, but NASA said the science was worth it.

“The scientific allure is the chance to examine and investigate the compositions and textures of exposed materials in the crater’s depths for clues about ancient, wet environments,” NASA stated in a press release. “As the rover travels farther down the slope, it will be able to examine increasingly older rocks in the exposed walls of the crater.”

The trek down was interrupted by a severe dust storm in July 2007. Opportunity’s power-generating capabilities dropped by 80 percent in only one week as its solar panels became covered in dust. Late in the month, Opportunity’s power dipped to critical levels. NASA worried the rover would stop working, but Opportunity pulled through.

It wasn’t until late August that the skies cleared enough for Opportunity to resume work and head into the crater. Opportunity spent about a year wandering through Victoria Crater, getting an up-close look at the layers on the bottom and figuring that these were likely shaped by water.

Opportunity climbed out successfully in August 2008 and began a gradual journey to Endeavour, an incredible 13 miles (21 km) away. It took about three years to get there, as the rover was stopping to look at interesting science targets on the way. But Opportunity successfully arrived in August 2011.

Opportunity’s water history examinations continued at Endeavour, with one example being a 2013 probe of a rock called “Esperance.” The rock not only has clay minerals produced by water, but there was enough of the liquid to “flush out ions set loose by those reactions,” stated Opportunity long-term planned Scott McLennan of the State University of New York, at the time.

By mid-year 2014, however, Opportunity was experiencing problems with its aging memory. The rover used Flash memory to store information when it went into hibernation during the Martian nights, which take place about as frequently as they do on Earth. 

Controllers did a remote memory wipe from Earth, but memory issues and resets continued to plague the rover through the end of the year. Eventually, officials elected to stop using Flash memory, move storage over to random access memory (RAM) instead, and find a way to address the problem more thoroughly. In 2015, NASA decided to use RAM in most situations, which requires Opportunity to send high-priority data right away as the information cannot be stored if the rover is off.

Despite these issues, Opportunity continues rolling on the Red Planet. It set an off-world driving record in July 2014 when it successfully passed 25.01 miles (40.2 kilometers), exceeding the distance from the Soviet Union’s remote-controlled lunar Lunokhod 2 rover in 1973. In March 2015, it passed another huge milestone: completing a marathon on Mars.

The rover successfully imaged Comet Siding Spring when the celestial body sped fairly close to Mars in October 2014. In January 2015, Opportunity took pictures from a “high point” on the rim of Endeavour, about 440 feet (134 feet) above the surrounding crater floor. In March 2015, NASA announced that the rover – while overlooking an area nicknamed “Marathon Valley” – had seen some rocks with a composition unlike others studied by Spirit or Opportunity; one of the features was high concentrations of aluminum and silicon. 

After working through a Martian winter, in March 2016, Opportunity tackled its steepest slope ever — reaching a tilt of 32 degrees — while trying to reach a target on “Knudsen Ridge” inside Marathon Valley. As engineers watched the rover’s wheels slip in the sand, they decided (with some reluctance) to skip the target and move to the next thing. 

NASA announced it was wrapping up operations in Marathon Valley in June 2016, and added that Opportunity recently got a close-up look of “red-toned, crumbly material” on the southern slope of the valley. Opportunity scuffed some of this material with a wheel, revealing material with some of the highest sulfur content seen on Mars. NASA said the scuff had strong evidence of magnesium sulfate, a substance expected to precipitate from water. 

As of August 2017, Opportunity was in a location called “Perseverance Valley” on the rim of Endeavour Crater, and the rover had traveled 27.95 miles (44.97 kilometers).

Courtesy-Space

Will The James Webb Telescope Easily Find Earth Like Planets

August 17, 2017 by  
Filed under Around The Net

The James Webb Space Telescope (JWST), billed as “NASA’s premier observatory of the next decade,” could search for signs of an atmosphere on Proxima b. When it launches next year, JWST will be the most powerful space-based observatory yet, and the largest ever contrcuted. Its 6.5-meter mirror (nearly three times the size of the Hubble Space Telescope’s mirror) is expected to yield insights into the entire universe, ranging from the formation of planets and galaxies to peering at exoplanets in higher resolution than ever before.

There is only so much telescope time for JWST, however, and as with Hubble observations, astronomers will receive access on a competitive basis. Among the many proposals for the telescope that have emerged in recent months following NASA’s solicitation of science projects, a paper accepted for publication in the Astrophysical Journal (a draft version of which is available on Arxiv) suggests using the JWST to probe Proxima b’s atmosphere.

If such observations go forward, the telescope will provide an unparalleled view of Proxima b. JWST is optimized for infrared wavelengths, which can be used to examine a planet’s heat emissions. Because JWST will be orbiting the sun, it won’t be peering through Earth’s atmosphere, whose warmth can interfere with observations.

“Other telescopes are not able to do this,” Ignas Snellan, an astronomy researcher at the University of Leiden in the Netherlands and the paper’s lead author, told Seeker in an email. “Hubble is too small and works in the wrong wavelength range. Current ground-based telescopes cannot touch the mid-infrared because of very high thermal backgrounds, and are in a not enough stable environment, in contrast to JWST, which operates from space.”

The astronomers hope to use JWST to determine whether or not Proxima b has an atmosphere. Snellan said this will be very difficult, because the planet is very faint compared to its parent star. The research team therefore proposes looking for carbon dioxide.

The team’s method “looks for a striking signature that is expected from this molecule at 15 micron, that varies strongly from one wavelength to the next,” Snellan explained. “It will be very challenging, but we think doable.”

Finding carbon dioxide isn’t necessarily a sign of life as we know it. The gas is only found in trace amounts in Earth’s atmosphere (which is mostly made up of nitrogen and oxygen), even though carbon is the primary basis for life on our planet.

But carbon dioxide is a common gas on both Venus, which has a hellishly thick atmosphere, and Mars. Though the Red Planet once had a much thicker atmosphere long ago, today it is very thin. Scientists are still investigating how this atmospheric loss occurred, but suggest that the sun might have pushed light molecules out of Mars’ upper atmosphere that could not be held in by the planet’s gravity. Life may have existed on Mars in the ancient past, but scientists aren’t sure if that was possible then — or even now.

Might Proxima b be hospitable to life? Scientists are eager to look at the exoplanet in more detail, but Snellen notes that even better telescopes will be needed to answer that question. He suggests that the European Extremely Large Telescope could do the job after construction of the massive observatory is completed in the next decade. It would be able to probe for oxygen, which is a more definitive sign of life.

Meanwhile, the Breakthrough Starshot Initiative, which aims to one day send ultra-fast nanoprobes to the Alpha Centauri star system, is planning to soon begin examining the system’s three stars. The initiative recently partnered with the European Southern Observatory’s Very Large Telescope to look for worlds that could be habitable.

Courtesy-Space

Astronomers Find Stratrosphere On Alien World

August 10, 2017 by  
Filed under Around The Net

A huge, superhot alien planet has a stratrosphere, like Earth does, a new study suggests. 

“This result is exciting because it shows that a common trait of most of the atmospheres in our solar system — a warm stratosphere — also can be found in exoplanet atmospheres,” study co-author Mark Marley, of NASA’s Ames Research Center in California’s Silicon Valley, said in a statement.

“We can now compare processes in exoplanet atmospheres with the same processes that happen under different sets of conditions in our own solar system,” Marley added. [Gallery: The Strangest Alien Planets] 

The research team, led by Thomas Evans of the University of Exeter in England, detected spectral signatures of water molecules in the atmosphere of WASP-121b, a gas giant that lies about 880 light-years from Earth. These signatures indicate that the temperature of the upper layer of the planet’s atmosphere increases with the distance from the planet’s surface. In the bottom layer of the atmosphere, the troposphere, the temperature decreases with altitude, study team members said.

WASP-121b lies incredibly close to its host star, completing one orbit every 1.3 days. The planet is a “hot Jupiter”; temperatures at the top of its atmosphere reach a sizzling 4,500 degrees Fahrenheit (2,500 degrees Celsius), researchers said.

“The question [of] whether stratospheres do or do not form in hot Jupiters has been one of the major outstanding questions in exoplanet research since at least the early 2000s,” Evans told Space.com. “Currently, our understanding of exoplanet atmospheres is pretty basic and limited. Every new piece of information that we are able to get represents a significant step forward.”

The discovery is also significant because it shows that atmospheres of distant exoplanets can be analyzed in detail, said Kevin Heng of the University of Bern in Switzerland, who is not a member of the study team. 

“This is an important technical milestone on the road to a final goal that we all agree on, and the goal is that, in the future, we can apply the very same techniques to study atmospheres of Earth-like exoplanets,” Heng told Space.com. “We would like to measure transits of Earth-like planets. We would like to figure out what type of molecules are in the atmospheres, and after we do that, we would like to take the final very big step, which is to see whether these molecular signatures could indicate the presence of life.”

Available technology does not yet allow such work with small, rocky exoplanets, researchers said. 

“We are focusing on these big gas giants that are heated to very high temperatures due to the close proximity of their stars simply because they are the easiest to study with the current technology,” Evans said. “We are just trying to understand as much about their fundamental properties as possible and refine our knowledge, and, hopefully in the decades to come, we can start pushing towards smaller and cooler planets.”

WASP-121b is nearly twice the size of Jupiter. The exoplanet transits, or crosses the face of, its host star from Earth’s perspective. Evans and his team were able to observe those transits using an infrared spectrograph aboard NASA’s Hubble Space Telescope.

“By looking at the difference in the brightness of the system for when the planet was not behind the star and when it was behind the star, we were able to work out the brightness and the spectrum of the planet itself,” Evans said. “We measured the spectrum of the planet using this method at a wavelength range which is very sensitive to the spectral signature of water molecules.”

The team observed signatures of glowing water molecules, which indicated that WASP-121b’s atmospheric temperatures increase with altitude, Evans said. If the temperature decreased with altitude, infrared radiation would at some point pass through a region of cooler water-gas, which would absorb the part of the spectrum responsible for the glowing effect, he explained. 

There have been hints of stratospheres detected on other hot Jupiters, but the new results are the most convincing such evidence to date, Evans said.

“It’s the first time that it has been done clearly for an exoplanet atmosphere, and that’s why it’s the strongest evidence to date for an exoplanet stratosphere,” he said. 

He added that researchers might be able to move closer to studying more Earth-like planets with the arrival of next-generation observatories such as NASA’s James Webb Space Telescope and big ground-based observatories such as the Giant Magellan Telescope (GMT), the European Extremely Large Telescope (E-ELT) and the Thirty Meter Telescope (TMT). JWST is scheduled to launch late next year, and GMT, E-ELT and TMT are expected to come online in the early to mid-2020s.

Courtesy-Space

Is Searching For E.T. A Smart Idea

August 3, 2017 by  
Filed under Around The Net

The search for life elsewhere in the universe is one of the most compelling aspects of modern science. Given its scientific importance, significant resources are devoted to this young science of astrobiology, ranging from rovers on Mars to telescopic observations of planets orbiting other stars.

The holy grail of all this activity would be the actual discovery of alien life, and such a discovery would likely have profound scientific and philosophical implications. But extraterrestrial life has not yet been discovered, and for all we know may not even exist. Fortunately, even if alien life is never discovered, all is not lost: simply searching for it will yield valuable benefits for society.  

Hosted by Hanneke Weitering On July 28, 1851, the first-ever photo of a total solar eclipse was recorded by a Prussian daguerreotypist named Johann Julius Friedrich Berkowski. Daguerreotypy is an old photographic process that uses silver-plated copper treated with chemical fumes that make it light-sensitive. Previous attempts to take photos of solar eclipses failed to show the contrast between the sun’s corona and the dark disk of the moon. Using a small, six-centimeter telescope, Berkowski captured an 84-second exposure starting right after the moon moved completely in front of the sun.

First, astrobiology is inherently multidisciplinary. To search for aliens requires a grasp of, at least, astronomy, biology, geology, and planetary science. Undergraduate courses in astrobiology need to cover elements of all these different disciplines, and postgraduate and postdoctoral astrobiology researchers likewise need to be familiar with most or all of them.

By forcing multiple scientific disciplines to interact, astrobiology is stimulating a partial reunification of the sciences. It is helping to move 21st-century science away from the extreme specialisation of today and back towards the more interdisciplinary outlook that prevailed in earlier times.

By producing broadminded scientists, familiar with multiple aspects of the natural world, the study of astrobiology therefore enriches the whole scientific enterprise. It is from this cross-fertilization of ideas that future discoveries may be expected, and such discoveries will comprise a permanent legacy of astrobiology, even if they do not include the discovery of alien life.

It is also important to recognise that astrobiology is an incredibly open-ended endeavour. Searching for life in the universe takes us from extreme environments on Earth, to the plains and sub-surface of Mars, the icy satellites of the giant planets, and on to the all-but-infinite variety of planets orbiting other stars. And this search will continue regardless of whether life is actually discovered in any of these environments or not. The range of entirely novel environments opened to investigation will be essentially limitless, and so has the potential to be a never-ending source of scientific and intellectual stimulation.

Beyond the more narrowly intellectual benefits of astrobiology are a range of wider societal benefits. These arise from the kinds of perspectives – cosmic in scale – that the study of astrobiology naturally promotes.

It is simply not possible to consider searching for life on Mars, or on a planet orbiting a distant star, without moving away from the narrow Earth-centric perspectives that dominate the social and political lives of most people most of the time. Today, the Earth is faced with global challenges that can only be met by increased international cooperation. Yet around the world, nationalistic and religious ideologies are acting to fragment humanity. At such a time, the growth of a unifying cosmic perspective is potentially of enormous importance.

In the early years of the space age, the then US ambassador to the United Nations, Adlai Stevenson, said of the world: “We can never again be a squabbling band of nations before the awful majesty of outer space.” Unfortunately, this perspective is yet to sink deeply into the popular consciousness. On the other hand, the wide public interest in the search for life elsewhere means that astrobiology can act as a powerful educational vehicle for the popularization of this perspective.

Courtesy-Space

Are Comets More Dangerous To Earth Than Originally Thought

August 1, 2017 by  
Filed under Around The Net

There are a lot more big, potentially dangerous comets zooming through deep space than scientists had thought, a new study suggests.

Astronomers have likely underestimated by a factor of seven the number of “long-period” comets — those that take at least 200 years to complete one lap around the sun — that are at least 0.6 miles (1 kilometer) wide, according to the study.

“Comets travel much faster than asteroids, and some of them are very big,” co-author Amy Mainzer, of NASA’s Jet Propulsion Laboratory in Pasadena, California, said in a statement. “Studies like this will help us define what kind of hazard long-period comets may pose.” [Best Close Encounters of the Comet Kind]

The study team, led by University of Maryland professor James Bauer, analyzed data gathered by NASA’s Wide-field Infrared Survey Explorer (WISE) spacecraft.

The data set includes observations of long-period comets and Jupiter-family comets. Long-period comets are thought to arise in the distant Oort Cloud, a spherical shell of icy bodies that begins perhaps 186 billion miles (300 billion km) from the sun, researchers said. The long-period comets that WISE spotted were likely booted inward, toward the sun, by gravitational interactions with other Oort Cloud denizens millions of years ago, the researchers added.

Jupiter-family comets are quite different beasts. They lie relatively close to the sun, completing one lap around the star in less than 20 years

The WISE data revealed an unexpected abundance of long-period comets, the researchers said. For example, over an eight-month stretch, three to five times more of these objects zoomed by the sun than scientists had predicted.

“The number of comets speaks to the amount of material left over from the solar system’s formation,” Bauer said in the same statement. “We now know that there are more relatively large chunks of ancient material coming from the Oort Cloud than we thought.”

The study team also determined that long-period comets are up to twice as large, on average, as Jupiter-family comets. The size discrepancy is likely a consequence of the Jupiter-family comets’ more frequent trips past the sun, the researchers said: Every time these icy wanderers get close to Earth’s star, the sun’s intense heat drives off water and other volatile substances, which drag dust with them as they jet into space. 

“Our results mean there’s an evolutionary difference between Jupiter-family and long-period comets,” Bauer said.

The WISE spacecraft launched to Earth orbit in December 2009 and successfully carried out an all-sky survey in infrared light. NASA put WISE into hibernation in February 2011 but reactivated the spacecraft two years later to search for asteroids and other near-Earth objects. (Mainzer is the principal investigator for this new mission, which is called NEOWISE.)

The new study, which was published earlier this month in The Astronomical Journal, looked at data the spacecraft gathered during its prime mission, in 2010.

Courtesy-Space

Astronomers Explain Ross 128 Strange Radio Signal

July 28, 2017 by  
Filed under Around The Net

A strange radio signal that seemed to emanate from a small nearby star probably came from Earth-orbiting satellites, astronomers say.

Late last week, researchers announced that, on May 12, the 1,000-foot-wide (305 meters) Arecibo radio telescope in Puerto Rico detected a bizarre radio signal in the vicinity of Ross 128, a red dwarf star that lies just 11 light-years from Earth.

The signal was theoretically consistent with a transmission from an alien civilization, the astronomers said, though they stressed that hypothesis was “at the bottom of many other explanations.” Indeed, they pegged the leading candidates as flares from Ross 128, emissions from some other object in the same field of view as the star, and a burst from one or more high-orbiting satellites.

Now, follow-up observations — by Arecibo, as well as the Green Bank Telescope in West Virginia and the Allen Telescope Array (ATA) in northern California — point to this last hypothesis as the most likely, team members said.

“The best explanation is that the signals are transmissions from one or more geostationary satellites,” Abel Mendez, director of the Planetary Habitability Laboratory at the University of Puerto Rico, wrote in a statement today (July 21). (Geostationary satellites circle Earth at an altitude of about 22,300 miles, or 35,800 kilometers.)

“This explains why the signals were within the satellite’s frequencies and only appeared and persisted in Ross 128; the star is close to the celestial equator, where many geostationary satellites are placed,” Mendez added. “This fact, though, does not yet explain the strong dispersion-like features of the signals (diagonal lines in the figure); however, it is possible that multiple reflections caused these distortions, but we will need more time to explore this and other possibilities.”

But even though it’s likely that the Ross 128 signal has a prosaic explanation, scientists should still follow up on similar detections in the future, stressed Seth Shostak, a senior astronomer at the SETI (Search for Extraterrestrial Intelligence) Institute in Mountain View, California.

“The historic lesson is clear — these things pop up, and you have to follow them up, because you never know what’s going to be the real one, or even if there will ever be a real one,” Shostak, who was involved in the recent ATA observations of Ross 128, told Space.com earlier this week. “Following up is mandatory.”

Courtesy-Space

Did An Asteroid Impact Shape Mars Future

July 27, 2017 by  
Filed under Around The Net

The peculiar geological features on Mars have long puzzled astronomers and planetary scientists. The north of the planet is mostly smooth lowlands while the south is higher and full of craters, and the Red Planet’s interior has a striking abundance of rare metals.

Researchers have proposed various explanations for these elements, positing that they may have been shaped by such forces as ancient oceans, extraterrestrial plate tectonics, or a massive asteroid strike. The latter idea, known as the “single impact hypothesis,” has picked up steam of late, and was just given a shot in the arm by a new paper that argues that the sculpting of Mars and its two small moons was largely determined by a huge impact early in the solar system’s history.

In this scenario, a celestial body that was roughly the size of Ceres, a dwarf planet in the asteroid belt, collided with the Red Planet and tore away a part of its northern hemisphere, leaving behind large deposits of metallic elements. Additionally, debris from the asteroid circled the planet and eventually coalesced into Phobos and Deimos, the two tiny moons that orbit Mars — at least for now. (Scientists estimate that Phobos will either break up or slam into Mars in a few million years.)

Hosted by Hanneke Weitering On July 21, 1961, NASA astronaut Gus Grissom completed the second successful human spaceflight mission for the United States of America. His suborbital flight in the Liberty Bell 7 capsule lasted 15 minutes and 30 seconds and reached an altitude of 103 nautical miles. Everything went according to plan until just after Grissom splashed down in the Atlantic Ocean. While Grissom was waiting on the recovery crew to come get him, the hatch cover on Liberty Bell 7 unexpectedly blew open and water started pouring into the capsule. Grissom barely made it out alive, but Liberty Bell 7 sank into the ocean.

“We showed in this paper — that from dynamics and from geochemistry — that we could explain these three unique features of Mars,” said Stephen Mojzsis, a professor in the University of Colorado Boulder’s department of geological sciences and a co-author of the paper, in a statement. “This solution is elegant, in the sense that it solves three interesting and outstanding problems about how Mars came to be.”

The research, which Mojzsis produced in collaboration with Ramon Brasser, an astronomer at the Earth-Life Science Institute at the Tokyo Institute of Technology in Japan, was recently published in Geophysical Research Letters. It looked at Martian meteorite samples that landed on Earth. These samples had more rare metals (like iridium, osmium or platinum) than expected, hinting that Mars received a lot of impacts from small, rocky asteroids that carried these elements with them.

The scientists estimated that these rare metals account for about 0.8% of the mass of Mars.

They then ran simulations with asteroids of various sizes to determine what size would best fit the Martian geology. The answer was a huge asteroid about 745 miles across (1,200 kilometers) — nearly the length of the state of California. The simulations suggest this behemoth slammed into Mars about 4.43 billion years ago, just 700 million years after the solar system was formed. Several smaller impacts occurred in the eons that followed.

The researchers theorize that after the big impact took place, there were distinct areas of asteroid material and Red Planet rock on the surface. Over time, however, erosion, wind, and other processes on the surface swept the two reservoirs together in a mixture.

Mojzsis and Brasser next plan to use UC Boulder’s Martian meteorite archives to see how the composition of these meteorites differs or remains the same, depending on how old the meteorites are.

Courtesy-Space

Does Uranus Have An Odd Magnetic Field

July 18, 2017 by  
Filed under Around The Net

The planet Uranus just keeps getting weirder.

The icy gas world that strangely orbits the sun on its side may also have a wonky magnetic field that constantly flickers on and off, new research suggests.

Magnetic fields around planets, or magnetospheres, create shields against the bombardment of radiation from the sun known as solar wind. On Earth, for example, the magnetosphere lines up pretty closely with the planet’s axis of rotation, and magnetic field lines emerge from Earth’s north and south poles. On Uranus, however, the magnetosphere is a bit more chaotic.

Uranus’ spin axis is tilted by a whopping 98 degrees, and the planet’s off-center magnetic field is tilted by another 60 degrees. Every time the planet rotates (about every 17.24 hours), this lopsided magnetic field tumbles around, opening and closing periodically as the magnetic field lines disconnect and reconnect, the study found. 

Researchers at the Georgia Institute of Technology (Georgia Tech) in Atlanta figured this out by simulating Uranus’ messy magnetosphere using numerical models and data from NASA’s Voyager 2 spacecraft, which flew by the planet in 1986.

“Uranus is a geometric nightmare,” Carol Paty, an associate professor at Georgia Tech’s School of Earth & Atmospheric Sciences and co-author of the study, said in a statement. “The magnetic field tumbles very fast, like a child cartwheeling down a hill head over heels. When the magnetized solar wind meets this tumbling field in the right way, it can reconnect, and [so] Uranus’ magnetosphere goes from open to closed to open on a daily basis.”

When the magnetosphere opens up, it allows solar particles to bombard the planet. Then, when the magnetic field lines reconnect, this natural shield can continue to block the solar wind.

This process may be related to auroras on Uranus. Just like the auroras on Earth and other planets, Uranus’ atmosphere lights up when particles from the solar wind enter it and interact with gases like nitrogen and oxygen. 

NASA’s Hubble Space Telescope has previously observed auroras on Uranus, but astronomers face difficulties in studying how these auroras interact with the magnetosphere, because the planet is so far away — nearly 2 billion miles (3.2 billion kilometers) from Earth. The space agency is currently considering sending another spacecraft to Uranus and Neptune to investigate those planet’s magnetic fields, among other things.

Xin Cao, a Ph.D. candidate at Georgia Tech who led the study, said that studying Uranus can teach scientists a lot about planets outside of the solar system. “The majority of exoplanets [worlds outside the solar system] that have been discovered appear to also be ice giants in size,” he said. “Perhaps what we see on Uranus and Neptune is the norm for planets: very unique magnetospheres and less-aligned magnetic fields.

“Understanding how these complex magnetospheres shield exoplanets from stellar radiation is of key importance for studying the habitability of these newly discovered worlds,” Cao added.

The results of this study were published June 27 in the Journal of Geophysical Research: Space Physics.

Courtesy-Space

Next Page »